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Inverse-problem approach to designing photonic crystals for cavity QED experiments
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Photonic band gapPBG) materials are attractive for cavity QED experiments because they provide ex-
tremely small mode volumes and are monolithic, integratable structures. As such, PBG cavities are a promising
alternative to Fabry-Perot resonators. However, the cavity requirements imposed by QED experiments, such as
the need for highQ (low cavity damping and small mode volumes, present significant design challenges for
photonic band gap materials. Here, we pose the PBG design problem as a mathematical inversion and provide
an analytical solution for a two-dimension@D) crystal. We then address a plan@D crystal with finite
thickness structure using numerical techniques.
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[. INTRODUCTION produce localized electromagnetic fie[d. Both the spatial
and temporal properties of thesavity modesire affected by
Engineering new materials to meet specific design objecthe geometry of the defect.
tives often begins by trial and error. New structures are re- The ability to localize light fields has made photonic crys-
peatedly proposed and characterized, and the results frotals attractive for experiments in cavity QHB,9] and the
each iteration are used to further refine the design. This praguantum information scienc¢40,11]. PBG cavities offer a
cess continues until an apparent optimum is achieved—thatumber of advantages that make them an attractive alterna-
is, when the incremental modifications stop leading totive to Fabry-Perot resonators. Most notably, a small cavity
improvements. mode volume is an important factor in achieving the strong
However, from an implementation standpoint, trial andcoupling limit between the trapped atoms and the cavity light
error is inefficient and costly, even when the process can bfield. Photonic crystal cavities are capable of mode volumes
computationally simulated. Conceptually, trial and error pro-of the order of the cubic wavelength of the lidi®12].
vides little information about the quality of the optimum.  Modern lithographic techniques should enable the integra-
This is because the design space is often too large to permtiobn of PBG structures with micronscale magnetic traps for
an exhaustive search. Therefore, it is common to fall backeutral atoms[13]. Atom trapping experiments, however,
upon physical intuitior(that might not apply to the new ma- pose nontrivial design challenges for photonic crystals. Prac-
terial) to guide the engineering process. Of course, this is notical concerns in cavity QED experiments, such as atom de-
to say that design by trial is ineffective, only that it lacks alivery and confinement, strongly suggest using planar photo-
certain degree of rigor. nic crystals [7,12,14-19 (two-dimensional lattices with
Going beyond incremental design procedures requires afinite thicknesgrather than full 3D materials. However, two-
algorithmic, rather than intuitive, process. In many casesgdimensional (2D) PBG crystals only provide incomplete,
posing the design problem as a mathematical inverfsic®]  quasi-3Dlight trapping. While well confined within the lat-
can provide an assessment of the resulting optimum. Ideallyice plane, the cavity field can decay in the out-of-plane di-
algorithmic searches might uncover alternatives in the desigrection[8,20,21 by coupling to the radiated modes. Radia-
space that physical intuition failed to recognize. Howevertion loss should generally be the most significant decay
such an unconstrained optimum structure might prove toenechanism in planar photonic cavitig®. Therefore, maxi-
difficult to manufacture, in which case, the inversion optimi- mizing the cavity quality factoQ=Aw;/w; requires that
zation can be restricted to account for limitations in the fab-this radiation loss be minimized. Simultaneously, cavity
rication capabilities. Both alternatives are beneficial. The unQED experiments require that the cavity mode function have
constrained inversion provides an indication of the absolutdigh relative field strengths in vacuum regidas opposed to
optimal performance of the material, while the constrainednside the semiconductpwhich are accessible to the trapped
inversion produces the best structure that can actually batoms. Otherwise, the atomic system will not couple strongly
constructed. to the cavity field. Additionally, these criteria must be met
Engineering the optical properties of photonic band gapwithout sacrificing mode volume, i.e., by delocalizing the
(PBG) structures[3—6] is a process that can benefit from defect field.
inversion techniques. Here, the objective is to tailor the elec- There has recently been considerable progress toward
tromagnetic modes of the crystal by adjusting its spatiallyPBG cavities that display the necessary properties for QED.
dependent dielectric function. Specifically, by introducing aNumerical design work performed by Scherer and co-
defect into an otherwise periodic crystal, it is possible toworkers [8,22] has identified planar photonic crystals
[23,18,2] with mode volumes on the order of the cubic
wavelength of the light and cavi@ factors~10%, which is
*Electronic address: jgeremia@Caltech.EDU;  URL:http:// sufficient for strong coupling. However, with these struc-
minty.caltech.edu/MabuchiLab tures, it is difficult to know if they are true optima. Further-
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more, if they are not optimal, it is unclear how to further Here,j is the mode index andgs(r) is a normalized spatial
improve them, i.e., whether small modifications or largewave function,
changes in the crystal would be needed.

This paper poses the photonic crystal design process as an H;(r)=Ho,#;(r), (4)
inverse problem in order to provide an algorithmic optimiza- . . .
tion. That is, we represent the defect dielectric function adVheréHo; is chosen such thap; is max-one normalized,
resulting from the design requirementather than proposing € |#(")Imax=1 [26]. Itis also possible to directly express
a defect geometry and then characterizing the crystal to of® magnitude of the field at the locatiop of the trapped
serve its properties. To the best of our knowledge, this papeftom.
represents the first attempt to treat photonic band gap mate- | =[Hi(r,=0)|2 )
rials in such a manner. We demonstrate that mathematical ! hha '
inversion Iead; to _p_hotonic_crystal structures_ not preV_iOU3|3(/vherera=0 can always be achieved by a suitable choice of
suggested by intuitive or trial and error design techniquesgyeag.
and we also illustrate how fabrication-imposed constraints g other characteristics, such as the ca@tyit may be

can be placed on the inversion optimization. _ too difficult, or inappropriate, to analytically express the
When solving inverse problems, there are two possiblg,rgperty as a function of the electromagnetic modes. For the

directions to follow. The first is to analytically treat a simpli- cavity Q, it is more convenient to work with some other
fied model that captures the relevant properties of the actu,casure 1)

problem. Analytic solutions are rarely possible for the struc-

tures of arbitrary(realistio complexity; however, they pro- Q;~L;i[H;(n] (6)
vide a closed mathematical description, and hopefully a bet-
ter understanding, of the design process. In Sec. lll, wéhat acts as a proxy for an actual calculation of the ca@ity

present analytic results for a puiee., infinitely thick two-  This measure must display the property that maximizing it
dimensional photonic crystal. The second class of inversiosimultaneously maximize€Q (this will be discussed in
algorithms utilize numerical methods to treat more realisticgreater detail in Sec. Il C

descriptions of the underlying physics. However, in ex-

change for the more realistic model, it can be difficult to find Inversion cost functional

global extrema in the design space. In Sec. IV, we employ

. ) In all these cases, the fundamental relationships that con-
numerical methods to treat a planar photonic crystal mem- h . fthe el : q h
brane. nect the properties of the electromagnetic modes to the re-

ciprocal dielectric functiory(r) remain implicit,

Il. CAVITY DESIGN AS AN INVERSE PROBLEM Qi—Qi[n(nN], Vi=Vi[n(n], 1i—=ln(n]. (@)

The relationship between the spatially dependent dielecHere, the notatioff - - - ] represents the fact that the quanti-
tric function «(r) [24], and the properties of interest, such asties are complicated functionals of their input. This is be-
mode volume andQ, is a composition of two individual cause Eq(1) has been buried inside them. Therefore, evalu-
components. First, the electric and magnetic fields are relategting the functionals for any given crystal entails solving
to the reciprocal dielectric functiom(r)=1/«(r), through  Maxwell's equations and then computing the property from

the Maxwell curl operator, the resulting modes.
Nonetheless, with these implicit functionals in hand, it is
w2 possible to formally state the inverse problem by defining a
VX () VxH ()= = H(n), (1) cost functional

TLn()]=Qul () ]+ Bilwl n(r) 1= BVul n(r)]  (8)
whereH;(r) is the magnetic field for the mode with fre- ' _ .
quencyw; . It is often most convenient to work witH be-  evaluated for the appropriate cavity modem [27]. 5, and
cause the resulting Maxwell equation is Hermitian. This pro-8, are scalars that balance the relative importance of the

vides no difficulty because the electric field various terms in the cost. Solving the inverse problem is
accomplished by optimizing/,
Ei(r)=1VXH;:(r)/w; eqx(r) (2
J A 7* =max7[ 5(r)] )
7(r)

can always be found from the magnetic field.

The second relationship then connects the photonic Crysgver the possible structuréimdexed by their dielectric func-
tal's electromagnetic modes to its physical characteristics. Ifjon).
some cases, the property of interest can be directly ex- As with any inversion that is performed by optimization,
pressed, such as for the QED mode voluig]| there are many possible choices for the cost functional. How-
ever, the essential features of the cost are that it should cap-
B 2 ture all of the relevant physical design objectives being op-
Vi_j [¢3(r)]*dr. ®) timized, while remaining mathematically well suited for
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optimization. It can be seen that E®) includes terms for The two-dimensional photonic crystal consists of a bulk
the mode volume, the cavit®, and the peak field intensity. medium with an index of refraction,. It is laced with a
So, the first requirement has been met. The specific formuattice of infinitely deep cylindrical holes with radiug and
lations of the individual terms in E¢8) depend on the struc- index of refractionn,,. This lattice is represented by the
ture of the photonic crystal and the techniques being used teeal-space vector§R,} which point from the origin to the
optimize it. These points will be demonstrated in the follow- centers of the cylinders. All of the real-space lattice vectors
ing two sections. lie in a plane.

Of course, Eq(8) is deceptively simple—all the details of Since the inverse dielectric functiony(r) for the bulk
solving the inverse problem have been relegated to therystal is periodic, it is convenient to work with its Fourier
[- - -] notation. However, there is an important advantage taransform,
such an abstraction. EquatidB) provides a language for
describing the photonic crystal structuretermsof the de-
sign objective. It also provides a description of the inversion
that is independent of the particular method used to solve
Maxwell's equations 7 5(r)] is easily generalized to de- where the reciprocal lattice vecto satisfy G- R, =2l ,
sign objectives other than the caviy and mode volume, |=12 ... . Physically, each reciprocal lattice vector is the
and it applies to 2D, planar, and full 3D materials. wave vector of a plane wave that shares the periodicity of the

In the following two sections, Eq¢8) and(9) are solved  real-space lattice.
for specific examples. First, an analytic approach is used to As with the dielectric function, the bulk crystal electro-
treat an |nf|n|te|y thick two-dimensional Crystal. In this Case,magnetic modes are periodic in the lattice. In accordance
handling the[ - - -] calls for the majority of the effort. But with Bloch’s theoren{29], the bulk crystal electromagnetic

once this is accomplished, the optimization is relativelymodes can also be expanded in the reciprocal lattice vectors,
straightforward. The second example incorporates numerical

methods to treat a planar 2D crystal. Here, there is no . A

struggle with the notation—we just write a computer pro- Hog(1) =2 6.2 hygice' @O, (11
gram to compute the mode volume and cawtyHowever, » ¢
the optimization is complicated by the possibility of local
minima.

770("):% 7€' ® ", (10

where the mode is labeled by its wave vectpf30] and

band indexn. Thee, are orthogonal polarization vectors and
IIl. ANALYTICAL INVERSION the h, ¢ are the plane wave expansion coefficients that
produce the mode.

In this section, the photonic crystal inversion is analyti- Calculating the bulk crystal modes is accomplished by
cally performed for a two-dimensional structure. The 2Dsolving the Maxwell equatiofl), using the form in Eq(11).
problem is motivated by the fact that the planar and 2DThis leads to wave equations for the two possible polariza-
structures share many similarities. Treating the 2D crystations,
allows a detailed mathematical inversion and can provide

insight into how to also optimize a planar crystal. 0>
The general inversion strategy is to solve a variational > ng_e,(q+G)-(q+G’)hn,q+G,=%hn'q+G (12
problem by expanding the cavity field in the bulk crystal G’ c

electromagnetic modes. It is therefore necessary to select a

bulk 2D lattice with a band gap surrounding the desired cavfor TE modes, and

ity resonance frequendguch as an hexagonal array of holes

with a suitable lattice constanprior to the inversion. Once wﬁ q

the electromagnetic modes of the bulk structure are deter- > ne-c/la+Glla+ G'lhngier =7 Mngrc (13
mined, it is possible to optimize the caviy, field intensity G’ ¢

atr,, and mode volume over the bulk mode expansion co- , L

efficients. This optimization stage does not directly involvef®r TM modes. Since the polarizations uncouple for a pure
the defect dielectric function— it identifies the optimal cav- WO-dimensional crystals, it is possible to work with them

ity field that can be produced using the bulk crystal modes afidependently. For the remainder of this section, we utilize
a basis. Once these optimal expansion coefficients are idedE Modes; however, the same inversion technique applies
tified, the defect that produces the optimal field is extractedually well to TM modes.

by inverting the Maxwell curl equatiofi).

B. Defect crystal modes

A. Bulk crystal modes The cavity modem can be expanded in the bulk modes
Methods for solving the Maxwell equations for a two- Hp 4(r) using wave vectors that are confined to the first Bril-
dimensional photonic crystal are well establishig2g].  louin zone(see, for example, Ref29]),
However, it is useful to briefly review the plane wave expan-
sion_ method in order to provide sufficient context for solving Ho(D=> > a™H. (), (14)
the inverse problem. n qegz 9™
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of the two-dimensional lattice. This superposition is the rea- 1. Cavity mode volume and intensity
son for working with the magnetic, rather than electric, gy essing the cavity mode volume in terms of the basis
fields. Since Eq(1) is Hermitian, the bulk modes are com- function coefficients is straightforward
plete. ;
The photonic crystal cavity can be described by introduc-

g}gc?r?ca;ggicti%nnal defect termd(r) into the reciprocal di- V= E % agf");,am(lﬂnr,qr(r)|¢n,q(r)>+C-C-- (19
n,q '
7(r)=no(r)+dn(r), (159  as s taking derivatives with respect to the coefficients,
whose Fourier transform is given by
% - 2 (m) 20
daj _nq an,q<l/lj(r)|’/’n,q(r)>- ( )

5n(r):fkdk5n(k)eik-f~; Sy (16)

Here, the spatial functiong;(r) are the quantities defined in
However, unlike the bulk lattice, the cavity is not periodic, SOEq. (4), and the inner produdty, q,| in,q) denotes integra-
the Fourier expansion must run over all wave vectarsn  tion over the real-space domain in which the mode volume is
practice, the integral is generally approximated by a discreteg be minimized.
sum that is then truncated to allow computation. Similarly, the field intensity at the location of the trapped
The coefficientsa(}) are calculated by substituting Egs. atom is given by
(14) and (15) into the Maxwell equatioril). This produces
the matrix eigenvalue equatigf,28| ™
m)*x *
, = > n§:,] ay manoH?, ((0H,(0), (21
nr’qr ,
m - am _Pmom)
2, An,q;n’,q’an’,q’_ C2 anyq 1 (17) . i . )
n.q and the necessary derivatives with respect to the expansion
coefficients are also straightforward to find. When perform-
ing an inversion calculation, both the mode volume and in-
tensity functions can be further expanded in terms of the
A(T)_ I > h} 4+697q+6-q' —c'Nnr g7+ & reciprocal lattice vector plane waves. Doing so leads to alge-
GG’ braic expressions in the coefficierits . ¢ from Eq. (11).

w .
X(Q+G)-(q"+G')+ 8y n 8q,q %. (19 2. Cavity Q factor
¢ It is not as clear how to represent the cav@yn terms of

Here, it can be seen that the point defect couples all of ththe basis functions. The two-dimensional lattice is infinitely
bulk crystal modes. However, the Fourier coefficieAts, deep and therefore does not permit any radiated modes.

fall off quickly as the magnitude of the wave vector in- However, this does not prevent us from minimizing features
creases. of the two-dimensional lattice that would promote out-of-

plane loss were the structure a planar crystal. In other words,
we wish to find the two-dimensional structure of a planar
photonic crystal that minimizes the out-of-plane loss by con-
To optimize the inversion cost functiongl, it is neces-  sidering features computed for a pure 2D structure. Since the
sary to express EdB) in terms of the defect crystal modes cavity Q cannot be directly computed, it is necessary to de-
by utilizing the expansioril4). When performing an actual fine an auxiliary measure of field decay that applies to the
inversion calculation, this is the point when it would be nec-two-dimensional lattice.
essary to select a bulk photonic crystal geometry, such as a The essential requirement of the auxiliary measure is that
hexagonal lattice. Once this has been done, the plane wawgptimizing it simultaneously maximizes the cavify for a
representations of the optimization basis functidiig,(r), planar structurdwhere radiation loss can ocguit is pos-
can be computed. sible to identify such a measure by considering the physical
Another important point is that the optimization is per- nature of radiative field decay in a planar photonic crystal.
formed overdz(r), not the bulk lattice functionyy(r). In Out-of-plane loss is the result of guided crystal modes cou-
principle, this does not restrict the optimization in any way.pling to free-space modds], and frequency-wave-vector
The distinction betweenyy(r) andd#(r) is not perturbative, pairs in free space must lie within the light cone. Therefore,
so there is no requirement on the relative magnitudes of thbulk crystal modes with frequency-wave-vector pairs that lie
two functions. However, in practice, it can be practical tobelow the light line should not couple to free space because
restrict the structure of the defetfor example, to enforce they undergo total internal reflectig@2].
radial symmetryin order to limit the number of plane waves  Minimizing the contributions from bulk modell, 4(r)
(or equivalently, the number of reciprocal lattice vectors which lie above the light line reduces radiative cavity decay.
needed for Eq(11) to converge. We chose to adopt the following auxiliary function:

C. Cavity mode optimization
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s o possible solution is to guess values for the inversion param-
L=2> > a{ral)—2-"9, (22)  eters that nominally map the terms into the intef@d], this
n',q" N ’ ' aq’ is not an algorithmic procedure. A systematic approach to
) ) ) identifying good choices foB, and By, is to nest Eq.(24)
whereq; is the magnitude of its corresponding wave vector,yithin a second maximization over the . Although, per-
qj:”qu' ) forming the B; optimization calls for repeating the eigen-
Of course, since a 2D crystal does not support any Ungalue problem, possibly many times, saving the values of the
guided modes, Eq22) does not provide a numerical value yariational matrix elements and simply rescaling them ac-
for the cavity Q. It is a measure that for a 2D crystal is cording to the particular choice of th offers an efficient
expected to behave similarly to the act@bf a planar pho-  computational technique for the inversion.
tonic crystal with the same two-dimensional structure. This

naturally raises the question of how well E82) mimics the
features of a planar crystal compared to other choices for the

auxiliary function. The primary motivation for using this  With the optimal mode coefficienm({‘”g known, the final
definition of the auxiliary measure is that it has a distinctcomponent of the inversion is to extract the defect dielectric
physical interpretation, while simultaneously producing and#n(r) from the expansion coefficients. Doing so involves
inversion cost functional that can be analytically optimized.inverting the Maxwell equations, and can be accomplished
There is substantial eviden¢8] that minimizing the contri- by substituting Eqs(10), (11), and (16) into Eq. (1) and
bution of 2D wave vectors above the light line improves thesolving for thedz, .

cavity Q of a planar crystal. Actually, Eq22) is a strict In simplifying the resulting expressions, it is necessary to
definition since symmetry considerations of the guided crysmake use of the orthogonality of the bulk crystal mode func-
tal modes will prevent many modes above the light line fromtions. It is also helpful to let the mode wave vectgrsun
coupling to free space. From a design perspective, it is atver multiple Brillouin zones. Doing so leads to more man-

D. Extracting the defect dielectric

tractive to work with a conservative measure. ageable equations because the summations are no longer re-
stricted. In the end, the proper expressions can be obtained
3. Analytic optimization by folding the equations back into the first Brillouin zone.

The details of the derivation are provided in the Appendix,

The photonic cavity design ch teristi . (19— . . .
P ! vity design characteristi¢ggs. (19) nd the result is a linear system of equations,

(22)], can be substituted for their respective terms in the cost

functional 7] 7]. Setting the derivatives of the design prop- 2 2
erties with respect to the expansion coefficients equal to zero 2 D(m)-k577k: a(m)wm “n.g (24)
produces a linear variational problem. In order to ensure that M nd 2

the mode functions remain properly normalized, it is conve- . . _ o
nient to impose the constraint-13|a, />=0 as a Lagrange Where the inversion matri@(™ is given by
multiplier. Maximizing the resulting Lagrangian leads to a

matrix eigenvalue problem, Dm);ﬁzz > a¥, . h% g6l @/ + 6k
n'" Gq' '
wWnp' ' W ’
o B (O)Hig O X(@+8)-(q+ G-k, (29
n/’ql

The matrix is indexed by the bulk modes, labeled hyqj,
and the Fourier coefficients of the defekt,

An important point to make is that the cavity resonance
frequencyw,, enters into Eq(24) as a parameter. Solving the
whose eigenvectors correspond to values of the expansigAVersion requires specifying the cavity frequency which can
coefficientsa(y which satisfy Eq/(9). The eigenvector cor- take on any value within the bulk crystal band gap. It should
responding to the smallest eigenvalue is the best optimum.be gxpected that the best |_n-[_)lane confinement results from a

In practice, it is necessary to select values for the weightpav'ty. frequencyum deep W'.thm th_e band'gap'. quever, the
ing parameters3, and . Nominally, this is because the resulpng inverted qefect dielectric function is different de-
various terms in the cost functional are dimensionally in_pgndmg on the choice Of. the resanance frequency. Moreqver,
equivalent, and their relative magnitudes can differ signifi-dlfferent choices oy, might lead to defects that are easier

cantly. For example, the cavi® and the mode volume are to fabricate than others.

not numbers that can be directly added or compared. The
inversion parameter8, andg,, serve to remedy this problem

afm)q, =Aay,, (23

_IBV< (r/fn’,q’ | ’//n,q>

Computational complexity

by mapping both terms into the dimensionless intef@al]. Interpreting the computational complexity of the matrix
Therefore, the ideal choices for the weighting parameters arequations in Eq(25) is aided by considering tHevectors as
the reciprocals of the optimal mode volume &Rd a sum of reciprocal lattice vectors and Brillouin zone vec-

However, since the optimal values are not known at thdors, k=q+ G. This shows that the defect is constructed us-
beginning of the inversion procedure, it is impossible toing bulk crystal modes foall wave vectors that lie within the
know the best choices fgB, and 3, a priori. While one  Brillouin zone. Counting vectors in this manner allows the
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dimensions of the inversion matrices to be determined. Since
Eqg. (1) is Hermitian, the number of bands is equal to the
number of reciprocal lattice vectorBlg=cc. Similarly, the

e & & o @ »
® ® & & @ & @

number of bulk crystal modes needed to construct a nonpe- 0 O 0 00 00 C
riodic defect isN,=c. Therefore, the dimension of the e 6 0 @ 0 0 0 0o O
square matriD(™ is a strictly countable double infinity. ® & & 0 °* ¢ o & o 0O
In practice, summations over reciprocal lattice vectors are e ® ® & s+ @ & & @
truncated to a finite numbed, which likewise limits the 2 & & & ¢ o+ & & & @
number of bands for each wave vectoNg. The truncated ® & o o ¢ ® @ @ @
bulk mode basis is no longer rigorously complete. However, ® & ® & © ® ® @
in practice, the Fourier coefficients in E@l0) fall off ® ® © ® © o @

quickly as|G|| increases. Therefore, truncating the basis can e © © © © o
be achieved without sacrificing accuracy provided that Fou-
rier expansions remain sufficiently accurate. Retaining the
proper dimension ob(™ requires that the number of defect
Fourier wave vectord\,, also be properly chosen. The re-
quirement thaD(™ remain square requires that the number
of distinct bulk modes in the Brillouin zong (recall thatk

=0+ G) be exactlyNg .

The number of matrix elements D™ scales a®©(N2).
However, the computational complexity of the sums that
must be evaluated when computing the matrix elements scale
as O(Né). Therefore, the overall time complexity for solv-
ing the inverse problem i@(Ng), and can prove to be com-
putationally demanding. In practice, it is beneficial to em-
ploy approximate methods for solving the linear system of
equationd 31], if the calculations are to be performed on a
personal computer.

-

| it |2 ¢ miax | By i) 12
=] -}
43 L]

L]

FIG. 1. The photonic crystdb) and the cavity electric fiel¢b)
E. lllustration: Symmetric defect that result from optimizing th&®, mode volume, and peak cavity
) ) ) intensity by solving a two-dimensional inverse problem for a radi-

As a first demonstration, we considered an hexagonal 2Rjly symmetric defect. The resulting cavity hole was reduced in
photonic crystal with a radially symmetric defect. The bulk yadius tor.=2.1/a, wherea is the crystal lattice constant, and the
material index of refraction was chosen to ig=3.4, and  neighboring holes were also reduced in size and displaced outward.
the hole radius wass,/a= 0.3 (dimensionless distanceada, The most significant feature of the optimized structure is that
have been adopted due to the invariance of the results witthe index of refraction of the bulk crystal holes was increased to
respect to a consistent scaling of the spatial dimengidie  n,=1.9.
rationale behind these parameters was based on competing
factors. It has been shown that large lattice holes lead tover the 8;. The search required solving the eigenvalue
out-of-plane loss due to scattering from the edf@®2. problem in Eg.(24) for different scaling parameters 28
However, the frequency band gap decreases as the hole sittmes.
is reduced, s@;,, must not be made too small. 30% of the  Solving the linear system of inversion equations in Sec.
lattice constant provides a good compromise. Il D produced the crystal and associated cavity mode shown

The dielectric index of refractiomy,= 3.4, was chosen in Fig. 1. Here, the 2D mode volume was\ /4. The loca-
because it is typical of the semiconductor materials thation and size of the photonic crystal holes was determined
might be used to incorporate photonic crystals into atonfrom a contour plot of the reciprocal dielectric function, see
trapping experiments(e.g., Ab4Ga -As). The essential Fig. 2. The contour half way between the minimum and
property of the bulk dielectric material is that it does notmaximum values ofy(r) was adopted in order to eliminate
absorb light around the atomic transition frequency, for exthe small peak oscillations. These oscillations were the result
ample 852 nm for Cs. of truncating the Fourier expansions fgg(r) and §7(r).

For the purpose of the calculations, the photonic crystal The photonic crystal shown in Fig(d has several dis-
lattice was truncated to five layers surrounding the centetinctive features. First, the hole at the location of the cavity is
defect atr =0. We found that this number of layers provided reduced in radius to,=0.214. The nearest-neighbor holes
a sufficient description of the properties of the photonic cryswere also reduced in radius, to approximatg|y-0.264, as
tal without exceeding the computational power of a typicalwell as outwardly displaced from their original locations by
desktop computer. The coefficient optimization was per—~0.15&. Qualitative arguments for these features, which
formed by adjusting the parameterg; ), in 7 until the best were also observed by Vuckovat al, have been proposed
maximum was achieved. Parameter optimization was pef8]. Reducing the size of the defect hole draws a bulk mode
formed using a conjugate-gradient search algoritf88]  from the air band into the photonic band gap. Air-band
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()

Frequency [ wa /2ac )

FIG. 2. Extracted reciprocal dielectric function(r)=1/«(r), r X J T
found by solving the inversion problem for a two-dimensional hex-
agonal lattice with a radially symmetric defect. The most distinctive ~ FIG. 3. Dispersion relationship and bulk mode contributions to
feature of the mathematically optimal photonic crystal is that thethe optimized cavity mode for a radially symmetric defect. The
bulk lattice air holes have an index of refractiop>1. upper shaded region denotes the free-space light line. The band

structure(solid lineg of the optimized photonic crystal is shown

modes are characterized by higher intensities in regiongnd the points indicate bulk modes that contribute more than 1% to
where the index of refraction is lower, such as in the air holethe cavity mode. The dashed lines represent the band structure of a
Therefore, the reduced cavity radius is most likely the resulPhotonic crystal with air holes.

of the design requirement that maximizes the intensity, at . .
-0 gnred Ba The rationale here is that leaky modes must be excluded

y the Q maximization. However, constructing a cavity

them away from the cavity reduces the intensity of the sec’ ode that is well localized, i.e., not periodic, requires a large

ondary lobes surrounding the main peak in the cavity modé1umber of Fpurier components, ipcluding high .frequency
[see Fig. 1b)]. These lobes, which would normally coincide modes. Drawing bands out of the light cone provides access

with air holes in the hexagonal lattice, experience an atypi:m more basis functions and this allows a localized cavity

cally high index of refraction. The lobe intensities are sup—f'e.Id to be gor?strgcted_wqhout resorting to leaky modes.
pressed because the defect mode, which was pulled from tg%"”’ the optimization did incorporate several bl.Jlk modes
air band, is low-index seeking. As a result, the cavity mod rom above the light line, particularly from thiI" line.

displays better localization. Therefore, the displaced neigh- .We do not attempt to comment on how photonlp qrystals
boring holes likely result from the mode volume minimiza- With nonair holes might be fabricated. However, it is impor-
tion design requirement tant to consider the major effects of adjusting the hole dielec-

By far, the most significant feature of the optimized pho—g'c' dlncrea;mg the hg)le |nde>;hof. rgfractlont dicgeﬁes trlﬁ
tonic crystal in Fig. 1 is that thendex of refraction of the and gap. Rowever, because the Index contrast between he

bulk hoies is increasetb n,~1.9. The optimal structure is a bulk material and the holes is smaller, it should be possible

bulk photonic crystal whose holes are made of a materiai° incre_ase the hole radius without suffering as much vertic_al
other than air. Understanding this result requires analyzin cattering from the e_dges. Of. course, increasing the hole size
how the cavity mode is constructed from the bulk mode basi ushes bands back into the light cone and a balance must be
functions. The solid lines in Fig. 3 show the dispersion rela-ound'
tionship of the optimized crystalwith nonair holes For _ )
reference, the dispersion relationship for a corresponding F. lllustration: Asymmetric defect
crystal with air holes 1f,=1.0) is denoted by the broken  As a second demonstration, we relaxed the radial symme-
lines. The pointscircles represent bulk modes, identified by try requirement, and considered an arbitrary defect in a two-
their band index, wave vector, and frequency, which contribdimensional hexagonal lattice. The same photonic crystal pa-
ute more than 1%|a{2|2>10"2, to the optimized cavity rameters from Sec. IllE were adopted: a bulk index of
mode. refraction n,=3.4, and hole radius,/a=0.3. Again, the

As can be seen in Fig. 3, the crystal with=1.9 contains mode expansion was constructed using five photonic crystal
more bands that lie below the light line. Consequently, mordayers surrounding the defect center to provide a sufficient
modes, particularly with larger wave vectors and frequenbulk mode basis expansion without incurring excessive com-
cies, contribute to the cavity mode without sacrifici@y  putational expense.
(since these modes now lie below the light )inklost likely, Solving the linear system of inversion equations was per-
the ability to include contributions from more bulk crystal formed by nesting the optimization within a conjugate-
modes allows an increase in the cavily while simulta- gradient search for the beg; weighting parameters. The
neously decreasing the mode volume. photonic crystal was again constructed by taking the contour

Decreasing the radii of the neighboring holes and movin
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I O I o A §ma, ey Pyl St the optimized cavity mode for a radially symmetric defect. The

Hal e ETEL e el upper shaded region denotes the free-space light line. The band
structure(solid lineg of the optimized photonic crystal is shown
and the points indicate bulk modes that contribute more than 1% to
the cavity mode. The broken lines represent the band structure of a
photonic crystal with air holes.

| Eir) 2 f max | Bir) £

4 layers 3, 4, and 5, respectively. Slight deformations along the

x direction were observed in theaxis holes. However, their
deformation was small, with major axes of 0.8Hlong the

x direction and minor axes of 0.28/ No consistent defor-
FIG. 4. The photonic crystala) and the cavity modgb) that ~ mation of hole size was observed for any other direction.
result from optimizing th&), mode volume, and cavity intensity by The qualitative arguments, suggested by Vuckaeti@l.
solving a two-dimensional inverse problefradial symmetry not [8] also apply to this structure. Replacing air hole sites with
imposed. The cavity hole was reduced in radiusrie=2.18a, and _ higher-index material suppresses the amplitude of air-band
the neighboring holes were elongated in the vertical direction. Th%riginated modes. But more importantly, the partial elonga-

most significant feature of the optimized structure is that the inde)i'on of holes alond the axis bears significant resemblance
of refraction of the bulk crystal holes was increaseae-1.75. : “ - 9 ' . ,,'g m
to the “fractional edge delocations” suggested by Scherer

level half way between the minimum and the maximum Ofanico-whorﬁer@d?]il ic def he ind f ref
n(r) to eliminate the numerical effects of truncating the Fou- . s with the radia y-symmetrlc efect, the index o refrac-
fier expansions. tion of the bulk holes |ncrea§ed, _but onlyrig~1.8. A simi- '
The resulting photonic crystal and cavity mode is depictedar argum.ent ba;ed on puIImg.h!gher bands out of thg light
in Fig. 4. Here, the volume of the 2D mode was reduced t¢O"€ @gain applies. However, it is not as easy to provide an
~)\2/10. The center photonic crystal hole was reduced irfrgument for the elongated holes surrounding the defect and
radius tor,=0.22A and remained circular. However, the along thex andy axes. Nonetheless, it can be seen from Fig.
nearest-neighbor holes were deformed mainly injtitrec- 4(b) that better mode localization was achieved by allowing

. h ) lon&. of the four hol b q an asymmetric cavity defect.

tion. The minor axes, along, o the four holes above an Figure 3 shows the band diagram for the optimized pho-
below the cavity were reduced tg ~0.26a. Their corre- — onic"crystal. The dispersion relationship for bulk holes with
sponding major axes were simultaneously increased t

fi,,= 1.8 is depicted by the solid lines, and the air hole bands
0.394, resulting in the elliptical holes as seen in Figa4 n P y ’

re given by the broken lines. The circles represent bulk
These four neighboring holes were also radially displaceqi] g y P

from the: 'h ! lattice sites by O@EEmall odes that contribute more than 1%$"2>10"2, to the
rom their normal hexagona ‘attice sites by dlssmaller optimized cavity mode. The same argument used to explain
than what was observed for the symmetric defect.

) ) A the symmetric defect results can be made here. The crystal

There was also a deformation of holes lying along xhe ith n,=1.8 contains more bands below the light line.

axis. These were elongated in thedirection; however, the A distinctive feature of the optimal asymmetric mode is
degree of eccentricity was not constant. The minor axes othat it contains fewer contributions from leaky modeside

the two horizontally neighboring holes decreased to @26/ the light cong than for the symmetric case. This can be seen
while their major axes increased to 0.81/The remaining by comparing Figs. 3 and 5. Exactly how the larg&mwas
horizonal holes were also vertically stretched, with majorachieved for the asymmetric cavity is not clear. However, it
axes given by 0.3@&, 0.314, and 0.304 for photonic crystal is not surprising that constraining the optimizatidor ex-

x/a
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FIG. 6. Schematic of the planar photonic crystal optimized us- % e
ing numerical inversion methods. is the hexagonal lattice con-
stant,d is the thickness of the slab, angd is the radius of the bulk o
crystal holes. The design parameters were obtained by computing
the crystal electromagnetic fields produced by plane wave illumina-
tion. The cavityQ was obtained by computing the reflection coef- y . . '
. : o 0 5 10 15 20 25 30
ficient R(w) as a function of incident wave frequency.
GA Generation Number
ample, by imposing a symmetry restrictjareduces the abil- FIG. 7. Optimization progress as a function of genetic algorithm
ity of the inversion to satisfy the design requirements. generation number for the numerical inversion involving a planar

In these two-dimensional examples, solving the desigrphotonic crystal.
problem by inversion resulted in structures that differ from
the previous trial and error designs that have been suggesteta\ent multimode behavid#]. Parametrizing the dielectric
These new photonic crystal structures, however, might prov nction was accomplished by treating the positions and ma-
difficult to fabricate. As such, they provide an indication of ;

h ; ¢ an ideal o ‘ v i or and minor axes of the lattice holes as optimization vari-
:iczlpec;\(;irtr;ance ot an ideal, perhaps experimentally Impracz 5 Specifically, the cavity hole, the holes surrounding the

defect, and thex-axis holes were considered. In all, there
were 52 optimization variables, 4 for 13 different lattice
sites.

As a final example of inverting a photonic crystal defect, The Maxwell equations were solved by employing the
we considered a hexagonal structure with finite depth to entransfer matrix method of Pendry and BE#3]. This tech-
able a direct calculation of the cavi. Additionally, we  nique provided a means for computing the stationary states
constrained the index of refraction of the crystal holes toof the electromagnetic field for a crystal illuminated on one
ny=1. In this demonstration, the aim was to identify anedge by a plane wavéefer to Fig. 6. The spatial depen-
optimal planar photonic structure without requiring a moredence of the electromagnetic fields, as well as the crystal
complicated fabrication. transmission and reflection coefficients were calculated using

For the planar structure, it was necessary to abandon afirst-order finite difference solution to Maxwell’s equations.
analytical solution and perform the inversion optimization The integration mesh used to compute the wave fields ex-
numerically. In some respects, the numerical design probleriended five layers above and below the surface of the slab,
was much simpler than the analytic case— it was possible t@nd absorbing boundary conditions were imposed at the top
maximize the inversion cost functional without the need and bottom of the integration cell.
for a specific mathematical analysis. Instead, the spatial de- The mode volume was computed by integrating the
pendence of the dielectric function was parametrized. Thefduare magnitude of the electric field over the interior of the
the inverse problem was solved by optimizifig5(r)] over ~ Photonic crystal. The volume integration was performed us-
the parameter space using a genetic a|gorithm_ Ing a three-dimensional Simpson'S rule quadrature, and the

However, numerical methods introduce several new chalte€sult was scaled by the field maximum, according to(BH.
lenges. For example, since the inversion cost functional inThe cavityQ was directly computed by scanning the reflec-
volved a large number of parameters, the resulting multidition coefficient over the frequency band gap. The full width
mensional optimization was complicated by the existence ofit half maximum of the reflection line shape was then used to
local minima. Additionally, numerically integrating the Max- determine the cavitp.
well equations is computationally expensive. For instance, a The inversion cost functional was optimized by employ-
single mode volume and cavit§ calculation can require iNg a genetic algorithni34] (GA) to maximizeJ[ n(r)]. A
several minutes of computer time. GA was chosen because, although not terribly efficient, ge-
netic algorithms provide good exploration to exploitation in
multidimensional searches. As such, they are generally suc-
cessful at avoiding local minima on a complex optimization

We considered an eight layer, two-dimensional hexagonaturface. However, good exploration does not come without
lattice slab, as depicted in Fig. 6. Based on the previousost. Twenty-seven GA generatiofigerations of the algo-
argumentgc.f., Sec. Ill B, the hole radius was chosen to be rithm) were required to optimizeZ, as can be seen Fig. 7.
rn/a=0.3 with a bulk material index of refractiom,=3.4.  With a population size of 10, a steady-state propagation rou-
The slab thickness was taken to béa=3/4, in order to tine, a mutation rate of 15% and a crossover rate of 85%, the

IV. NUMERICAL INVERSION RESULTS

Planar photonic crystal
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fered the advantage that no specific parametrization of the
dielectric function was necessary, and the structure was free
® e 0600 00 to explore full variations consistent with the imposed hex-
® & 000 0 0o agonal symmetry. The numerical illustrations, while they re-
® ® 00000 00 quired a specific parametrization of the dielectric function,
® 000 ° * 00 00 demonstrated the success of inversion techniques for struc-
o0 0 0 - 20 00 tures that can be tested in the laboratory.
® ® & & & 2 & % 0 0 For two-dimensional crystals, it was shown that contribu-
®® 2 00 0 0 00 tions to the cavity mode from leaky bulk modes could be
e ® & & & & @ @ minimized without delocalizing the field. Here, inversion
T EEEENE) produced design alternatives not previously suggested by
" EEEE) trial and error, or intuitive design. The optimal cavity defect
for both the radially symmetric and asymmetric defect opti-
mizations called for a lattice of holes with an index of re-
fraction greater than 1. An explanation for this inversion re-
sult, i.e., bulk crystal holes composed of a material other
than air, was suggested. Increasing the index of refraction of
the lattice holes pulls more of the band diagram out of the
light cone. Consequently, less of the higher frequency bulk
modes are leaky. It was argued that a better localized cavity
field can be constructed by incorporating these higher fre-
quency basis functions.
A point from the analytic inversion that deserves some
attention is the choice of cavity resonance frequeagy It
can be seen in Eq25) that w,, enters the inversion as a
parameter which must be specified. A thorough investigation
of the inversion outcome as a function of whang, lies
within the band gap was not performed here because it
would require repeating the full inversion for many different
choices ofw,, in order to fully characterize the relationship.
FIG. 8. The photonic crystdh) and the cavity electric fieldh) The computational expense of such an analysis is prohibi-
that result from optimizing th&, mode volume, and peak cavity tive. Further investigations may attempt to address this point.
intensity by performing a numerical inversion for a planar photonic  The inverse problem design approach was also applied to
crystal. a planar crystal in order to treat a more realistic structure.
However, this required that numerical methods for integrat-
full optimization required 24.5 h of central processing uniting the Maxwell equations as well as optimizing the inver-
time on an Intel PIll 1.2-GHz desktop machine. sion cost function be adopted. It was demonstrated that a
The resulting photonic crystal and the optimized cavitycrystal with low mode volume and hid could be achieved.
mode are shown in Fig. 8. As can be seen, a similar structurn order to minimize the effects of local minima in the in-
to the two-dimensional optimization was obtained. The cavversion optimization, a genetic algorithm was adopted, de-
ity defect hole was reduced in radius to 02&hd the holes spite its computational expense.
surrounding the defect were also decreased in size. The holes For the planar photonic crystal inversion, the dielectric

along thex axis were also elongated in taelirection, which ~ constant of the bulk lattice holes was constrainesife1.
again demonstrated the remarkable similarity to the fracThis provided an example of restricting the inversion optimi-
tional edge delocations suggested by Scherer and co-worke#ation because of fabrication considerations. Although it may
[8,22. be possible to manufacture the inversion designs from Sec.
The mode volume of the field in Fig. 8 was found to be!ll, i-€., bulk lattice holes wittn,>1, it is also important to
Vm~\3/3 and the cavityQ was~ 1.1x 10°. These quantities identify the best possible structure which canbe fabricated

|Eir)Z / max |Eir)|®

x/a

surpass those of the best PBG cavity designs to date. ~ using the currently available techniques. _ _
An aspect of the design process that was not considered in
V. CONCLUSION this paper was robustness. Ideally, the photonic crystal would

be insensitive to slight variations in its structure, as might

We demonstrated that inversion methods provide a powresult from small fabrication errors, temperature fluctuations,
erful technique for designing photonic crystals for cavity etc. Including robustness into design optimization problems
QED experiments. Both an analytical solution for a two-would add additional constraints into the optimization pro-
dimensional crystal and numerical results for a plaffiaite  cess, however, algorithmic approaches to finding robust op-
thickness crystal were presented. In both cases, the desigtima are knowrn 35,36 In addition to investigating robust-
objectives, namely high cavit®) and small mode volume, ness, we plan to explore the use of optimization methods to
were achieved. The analytical analysis on 2D structures ofdesign PBG structures with convenient geometric features,
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such as enlarged holes for atom trapping. Substituting both the bulk crystal and defect dielectric
It was shown that the mathematical analysis tools utilized=ourier expansions into the Maxwell curl equation,

here simultaneously optimize multiple, complimentary de-

sign requirements. Achieving similar outcomes via trial and w2

error methods is generally a formidable task. Therefore, anV X 7(r)VXHp(r)+ VX n(r)V X Hm(f)— Hm(r),

algorithmic approach to design problems with multiple ob-

jectives, such as with photonic band gap materials, will

likely only be possible via an algorithmic approach. left-multiplying by Hy» o and integrating leads to

2
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APPENDIX: 2D INVERSION EQUATIONS X(K"+G")- (k"+G"—k )fve'( rer ¢ rdr,
In this appendix, we describe in greater detail how to (A3)

extract the defect dielectric function from the optimized ex-

pansion coefficientgrefer to Sec. Il D. The general proce- where, again, the integrations are over Menit cells. Ap-
dure involves substituting the normal mode expangitih  plying the orthogonality of the bulk modes leads to a set of
and the Fourier expansiori$0) and(16), into the Maxwell  equations that still run over all wave vectors,

equation(1). The resulting inversion equatiof24) results

from employing the orthogonality of the bulk modes.

In doing the algebra, it is more convenient to work a bulk N % 2 E a(m)57Ik'h:rf,kuewhn,ewkr
mode expansion that includes wave vectors from alkof kG
space, i.e., by incorporating multiple Brillouin zones, X(K"+G")-(K"+G"—k")
1 -1 a)2 —w?
H ry=— (m)H r Al - (m) n” k" m
(D=1 ;k nil(1), (A1) = A, (A4)

whereN is the number of Brillouin zone&eciprocal lattice

vectors. The orthogonality relationships are now give by Then, the summations can be folded back into the first Bril-

louin zone by using the identity

H:, L (OH, (NAr=38, 1 2, s . (A2

fVN n’,k ( ) n,k( ) n,n EG: k' k+G ( ) 2 agrl]()ZNE agn.g’ (AS)
n,k ' n,q

where the integration is over th¢ associated Wigner-Seitz

cells. and the indices can be renamed to produce(E4).

[1] A. Tihkonov and V. ArseninSolutions of Ill-posed Problems [10] H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H.J.

(Winston/Wiley, Washington, 1977 Kimble, J. Preskill, M. Roukes, and A. Scherer, Quantum Inf.
[2] Quantum Inversion Theory and Applicationsdited by H. Comput.1, 7 (200, special issue on implementation of quan-
Geramb(Springer-Verlag, New York, 1994 tum computation.

[3] J. Joannopoulos, R. Meade, and J. WiRtotonic Crystals [11] M. Woldeyohannes and S. John, Phys. ReB0A5046(1999.

(Princeton University Press, Princeton, 1895 [ .
- . 12] T. Yoshie, A. Scherer, H. Chen, D. Huffaker, and D. Deppe,
[4] E. Yablonovitch, T. Gmitter, and K. Leung, Phys. Rev. L6, Appl. Phys. Lett79, 114 (2001.

2295(1991). ; ) .
[5] A. Scherer, T. Doll, and E. Yablonovitch, Lightwave Technol. [13] J.D. Weinstein and K.G. Libbrecht, Phys. Rev.52 4004
17, 11 (1999. (1995.

[6] M. Plihal and A.A. Maradudin, Phys. Rev. 84, 8565(1991).  [14] E. Miyai and K. Sakoda, Opt. Let26, 740 (2001).

[7] M. Loncar, D. Dedeljkovic, T. Doll, J. Vuckovic, A. Scherer, [15] C. Smith, T. Krauss, H. Benisty, M. Rattier, C. Weisbuch, U.
and T. Pearsall, Appl. Phys. Left7, 1937(2000. Eosterle, and R. Houdre, J. Opt. Soc. Am1B 2043(2000.

[8] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, Phys.[16] S. Noda, A. Chutinan, and M. Imada, Natuileondon 407,
Rev. E65, 016608(2001). 608 (2000.

[9] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, Proceed-[17] P. Villeneuve, S. Fan, S. Johnson, and J. Joannopoulos, IEEE
ings of LEOS, 2000(2000. Proc.: Optoelectronl45, 384 (1998.

066606-11



GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 (2002

[18] O. Painter, R. Lee, A. Scherer, A. Yariv, J. O'Brien, P. Dapkis, [29] N.W. Ashcroft and W.D. MerminSolid State PhysicéSaun-

and |. Kim, Science284, 1819(1999. ders College Publishing, Toronto, 1976
[19] S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, Appl. Phy$30] In this paperG always represents a reciprocal lattice veatpr,
Lett. 78, 3388(2002. refers to a wave vector confined to the first Brillouin zone, and
[20] N. Kawai, K. Inoue, N. Carlsson, K. lkeda, Y. Sugimoto, K. k refers to any wave vector that is not necessarily on the re-
Asakawa, and T. Takemori, Phys. Rev. L&, 2289(2002J. ciprocal lattice or in the Brillouin zone.
[21] O. Painter, J. Vuckovic, and A. Sherer, J. Opt. Soc. Anrl&88  [31] G.H. Golub and C.F. van LoamMatrix Computations Johns
275(1999. Hopkins Series in the Mathematical Sciences Vol(JBhns
[22] J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J. Hopkins University Press, Baltimore, 1983
Quantum Electron(to be published [32] W. Press, S. Teukolsky, W. Vetterling, and B. Flannéxy-
[23] A. Scherer, O. Painter, B. D'Urso, R. Lee, and A. Yariv, J. Vac. merical Methods in C(Cambridge University Press, New
Sci. Technol. B16, 3906(1998. York, 1992.
[24] Bold text in this paper is used to represent vector quantities. [33] J. Pendry and P. Bell, iRhotonic Band Gap Materiajsvol.
[25] Cavity Quantum Electrodynamicst ed., edited by P.R. Ber- 315 of NATO Advanced Studies Institute, Series E: Applied
man, Advances in Atomic, Molecular and Optical Physics Vol. SciencegKluwer, Dordrecht, 1996 p. 203.
2 (Academic Press, New York, 1994 [34] D. Goldberg,Genetic Algorithms in Search, Optimization, and
[26] In some cases, the polarization may be position dependent, Machine Learning Addison-Wesley, Reading, MA, 1989
leading toH?=H?(r). [35] G.E. Dullerud and F. Paganin Course in Robust Control
[27] In this paper, the indekrefers to any mode supported by the Theory: A Convex ApproachTexts in Applied Mathematics
photonic crystal, whilen is the cavity mode (Springer-Verlag, New York, 2000/0l. 36.
[28] M. Plihal, A. Shambrook, and A.A. Maradudin, Opt. Commun. [36] J. Geremia, W. Zhu, and H. Rabitz, J. Chem. Ph{8 10 841
80, 199 (199). (2000.

066606-12



