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Inverse-problem approach to designing photonic crystals for cavity QED experiments
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Photonic band gap~PBG! materials are attractive for cavity QED experiments because they provide ex-
tremely small mode volumes and are monolithic, integratable structures. As such, PBG cavities are a promising
alternative to Fabry-Perot resonators. However, the cavity requirements imposed by QED experiments, such as
the need for highQ ~low cavity damping! and small mode volumes, present significant design challenges for
photonic band gap materials. Here, we pose the PBG design problem as a mathematical inversion and provide
an analytical solution for a two-dimensional~2D! crystal. We then address a planar~2D crystal with finite
thickness! structure using numerical techniques.
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I. INTRODUCTION

Engineering new materials to meet specific design ob
tives often begins by trial and error. New structures are
peatedly proposed and characterized, and the results
each iteration are used to further refine the design. This
cess continues until an apparent optimum is achieved—
is, when the incremental modifications stop leading
improvements.

However, from an implementation standpoint, trial a
error is inefficient and costly, even when the process can
computationally simulated. Conceptually, trial and error p
vides little information about the quality of the optimum
This is because the design space is often too large to pe
an exhaustive search. Therefore, it is common to fall b
upon physical intuition~that might not apply to the new ma
terial! to guide the engineering process. Of course, this is
to say that design by trial is ineffective, only that it lacks
certain degree of rigor.

Going beyond incremental design procedures require
algorithmic, rather than intuitive, process. In many cas
posing the design problem as a mathematical inversion@1,2#
can provide an assessment of the resulting optimum. Ide
algorithmic searches might uncover alternatives in the de
space that physical intuition failed to recognize. Howev
such an unconstrained optimum structure might prove
difficult to manufacture, in which case, the inversion optim
zation can be restricted to account for limitations in the fa
rication capabilities. Both alternatives are beneficial. The
constrained inversion provides an indication of the abso
optimal performance of the material, while the constrain
inversion produces the best structure that can actually
constructed.

Engineering the optical properties of photonic band g
~PBG! structures@3–6# is a process that can benefit fro
inversion techniques. Here, the objective is to tailor the e
tromagnetic modes of the crystal by adjusting its spatia
dependent dielectric function. Specifically, by introducing
defect into an otherwise periodic crystal, it is possible
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produce localized electromagnetic fields@7#. Both the spatial
and temporal properties of thesecavity modesare affected by
the geometry of the defect.

The ability to localize light fields has made photonic cry
tals attractive for experiments in cavity QED@8,9# and the
quantum information sciences@10,11#. PBG cavities offer a
number of advantages that make them an attractive alte
tive to Fabry-Perot resonators. Most notably, a small cav
mode volume is an important factor in achieving the stro
coupling limit between the trapped atoms and the cavity li
field. Photonic crystal cavities are capable of mode volum
of the order of the cubic wavelength of the light@9,12#.

Modern lithographic techniques should enable the integ
tion of PBG structures with micronscale magnetic traps
neutral atoms@13#. Atom trapping experiments, howeve
pose nontrivial design challenges for photonic crystals. Pr
tical concerns in cavity QED experiments, such as atom
livery and confinement, strongly suggest using planar pho
nic crystals @7,12,14–19# ~two-dimensional lattices with
finite thickness! rather than full 3D materials. However, two
dimensional ~2D! PBG crystals only provide incomplete
quasi-3Dlight trapping. While well confined within the lat
tice plane, the cavity field can decay in the out-of-plane
rection @8,20,21# by coupling to the radiated modes. Radi
tion loss should generally be the most significant dec
mechanism in planar photonic cavities@8#. Therefore, maxi-
mizing the cavity quality factorQ5Dv j /v j requires that
this radiation loss be minimized. Simultaneously, cav
QED experiments require that the cavity mode function ha
high relative field strengths in vacuum regions~as opposed to
inside the semiconductor! which are accessible to the trappe
atoms. Otherwise, the atomic system will not couple stron
to the cavity field. Additionally, these criteria must be m
without sacrificing mode volume, i.e., by delocalizing th
defect field.

There has recently been considerable progress tow
PBG cavities that display the necessary properties for Q
Numerical design work performed by Scherer and c
workers @8,22# has identified planar photonic crysta
@23,18,21# with mode volumes on the order of the cub
wavelength of the light and cavityQ factors;104, which is
sufficient for strong coupling. However, with these stru
tures, it is difficult to know if they are true optima. Furthe
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GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 ~2002!
more, if they are not optimal, it is unclear how to furth
improve them, i.e., whether small modifications or lar
changes in the crystal would be needed.

This paper poses the photonic crystal design process a
inverse problem in order to provide an algorithmic optimiz
tion. That is, we represent the defect dielectric function
resulting from the design requirements, rather than proposing
a defect geometry and then characterizing the crystal to
serve its properties. To the best of our knowledge, this pa
represents the first attempt to treat photonic band gap m
rials in such a manner. We demonstrate that mathema
inversion leads to photonic crystal structures not previou
suggested by intuitive or trial and error design techniqu
and we also illustrate how fabrication-imposed constra
can be placed on the inversion optimization.

When solving inverse problems, there are two poss
directions to follow. The first is to analytically treat a simp
fied model that captures the relevant properties of the ac
problem. Analytic solutions are rarely possible for the stru
tures of arbitrary~realistic! complexity; however, they pro
vide a closed mathematical description, and hopefully a b
ter understanding, of the design process. In Sec. III,
present analytic results for a pure~i.e., infinitely thick! two-
dimensional photonic crystal. The second class of invers
algorithms utilize numerical methods to treat more realis
descriptions of the underlying physics. However, in e
change for the more realistic model, it can be difficult to fi
global extrema in the design space. In Sec. IV, we emp
numerical methods to treat a planar photonic crystal me
brane.

II. CAVITY DESIGN AS AN INVERSE PROBLEM

The relationship between the spatially dependent die
tric functionk(r ) @24#, and the properties of interest, such
mode volume andQ, is a composition of two individua
components. First, the electric and magnetic fields are rel
to the reciprocal dielectric functionh(r )51/k(r ), through
the Maxwell curl operator,

“3h~r !“3H j~r !5
v j

2

c2
H j~r !, ~1!

whereH j (r ) is the magnetic field for the modej, with fre-
quencyv j . It is often most convenient to work withH be-
cause the resulting Maxwell equation is Hermitian. This p
vides no difficulty because the electric field

Ej~r !5 i“3H j~r !/v je0k~r ! ~2!

can always be found from the magnetic field.
The second relationship then connects the photonic c

tal’s electromagnetic modes to its physical characteristics
some cases, the property of interest can be directly
pressed, such as for the QED mode volume@25#

Vj5E uc j~r !u2dr . ~3!
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Here, j is the mode index andc(r ) is a normalized spatia
wave function,

H j~r !5H0,jc j~r !, ~4!

where H0,j is chosen such thatc j is max-one normalized
i.e., uc(r )umax51 @26#. It is also possible to directly expres
the magnitude of the field at the locationra of the trapped
atom,

I j5uH j~ra50!u2, ~5!

wherera50 can always be achieved by a suitable choice
axes.

For other characteristics, such as the cavityQ, it may be
too difficult, or inappropriate, to analytically express th
property as a function of the electromagnetic modes. For
cavity Q, it is more convenient to work with some othe
measure, (L),

Qj;L j@H j~r !# ~6!

that acts as a proxy for an actual calculation of the cavityQ.
This measure must display the property that maximizing
simultaneously maximizesQ ~this will be discussed in
greater detail in Sec. III C!.

Inversion cost functional

In all these cases, the fundamental relationships that c
nect the properties of the electromagnetic modes to the
ciprocal dielectric functionh(r ) remain implicit,

Qj→Qj@h~r !#, Vj→Vj@h~r !#, I j→I j@h~r !#. ~7!

Here, the notation@•••# represents the fact that the quan
ties are complicated functionals of their input. This is b
cause Eq.~1! has been buried inside them. Therefore, eva
ating the functionals for any given crystal entails solvi
Maxwell’s equations and then computing the property fro
the resulting modes.

Nonetheless, with these implicit functionals in hand, it
possible to formally state the inverse problem by definin
cost functional

J @h~r !#5Qm@h~r !#1b I I m@h~r !#2bVVm@h~r !# ~8!

evaluated for the appropriate cavity modej 5m @27#. b I and
bV are scalars that balance the relative importance of
various terms in the cost. Solving the inverse problem
accomplished by optimizingJ,

h* 5max
h(r )

J @h~r !# ~9!

over the possible structures~indexed by their dielectric func-
tion!.

As with any inversion that is performed by optimizatio
there are many possible choices for the cost functional. H
ever, the essential features of the cost are that it should
ture all of the relevant physical design objectives being
timized, while remaining mathematically well suited fo
6-2
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INVERSE-PROBLEM APPROACH TO DESIGNING . . . PHYSICAL REVIEW E66, 066606 ~2002!
optimization. It can be seen that Eq.~8! includes terms for
the mode volume, the cavityQ, and the peak field intensity
So, the first requirement has been met. The specific for
lations of the individual terms in Eq.~8! depend on the struc
ture of the photonic crystal and the techniques being use
optimize it. These points will be demonstrated in the follo
ing two sections.

Of course, Eq.~8! is deceptively simple—all the details o
solving the inverse problem have been relegated to
@•••# notation. However, there is an important advantage
such an abstraction. Equation~8! provides a language fo
describing the photonic crystal structurein termsof the de-
sign objective. It also provides a description of the invers
that is independent of the particular method used to so
Maxwell’s equations.J @h(r )# is easily generalized to de
sign objectives other than the cavityQ and mode volume,
and it applies to 2D, planar, and full 3D materials.

In the following two sections, Eqs.~8! and~9! are solved
for specific examples. First, an analytic approach is use
treat an infinitely thick two-dimensional crystal. In this cas
handling the@•••# calls for the majority of the effort. But
once this is accomplished, the optimization is relative
straightforward. The second example incorporates nume
methods to treat a planar 2D crystal. Here, there is
struggle with the notation—we just write a computer pr
gram to compute the mode volume and cavityQ. However,
the optimization is complicated by the possibility of loc
minima.

III. ANALYTICAL INVERSION

In this section, the photonic crystal inversion is analy
cally performed for a two-dimensional structure. The 2
problem is motivated by the fact that the planar and
structures share many similarities. Treating the 2D cry
allows a detailed mathematical inversion and can prov
insight into how to also optimize a planar crystal.

The general inversion strategy is to solve a variatio
problem by expanding the cavity field in the bulk crys
electromagnetic modes. It is therefore necessary to sele
bulk 2D lattice with a band gap surrounding the desired c
ity resonance frequency~such as an hexagonal array of hol
with a suitable lattice constant! prior to the inversion. Once
the electromagnetic modes of the bulk structure are de
mined, it is possible to optimize the cavityQ, field intensity
at ra , and mode volume over the bulk mode expansion
efficients. This optimization stage does not directly invol
the defect dielectric function— it identifies the optimal ca
ity field that can be produced using the bulk crystal modes
a basis. Once these optimal expansion coefficients are i
tified, the defect that produces the optimal field is extrac
by inverting the Maxwell curl equation~1!.

A. Bulk crystal modes

Methods for solving the Maxwell equations for a tw
dimensional photonic crystal are well established@6,28#.
However, it is useful to briefly review the plane wave expa
sion method in order to provide sufficient context for solvi
the inverse problem.
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The two-dimensional photonic crystal consists of a bu
medium with an index of refractionnb . It is laced with a
lattice of infinitely deep cylindrical holes with radiusr h and
index of refractionnh . This lattice is represented by th
real-space vectors$Rn% which point from the origin to the
centers of the cylinders. All of the real-space lattice vect
lie in a plane.

Since the inverse dielectric functionh0(r ) for the bulk
crystal is periodic, it is convenient to work with its Fourie
transform,

h0~r !5(
G

hGeiG•r, ~10!

where the reciprocal lattice vectorsG satisfy G•Rn52lp,
l 51,2, . . . . Physically, each reciprocal lattice vector is th
wave vector of a plane wave that shares the periodicity of
real-space lattice.

As with the dielectric function, the bulk crystal electro
magnetic modes are periodic in the lattice. In accorda
with Bloch’s theorem@29#, the bulk crystal electromagneti
modes can also be expanded in the reciprocal lattice vec

Hn,q~r !5(
l

êl(
G

hn,q1Gei (q1G)•r, ~11!

where the mode is labeled by its wave vectorq @30# and
band indexn. The êl are orthogonal polarization vectors an
the hn,q1G are the plane wave expansion coefficients t
produce the mode.

Calculating the bulk crystal modes is accomplished
solving the Maxwell equation~1!, using the form in Eq.~11!.
This leads to wave equations for the two possible polari
tions,

(
G8

hG2G8~q1G!•~q1G8!hn,q1G85
vn,q

2

c2
hn,q1G ~12!

for TE modes, and

(
G8

hG2G8uq1Guuq1G8uhn,q1G85
vn,q

2

c2
hn,q1G ~13!

for TM modes. Since the polarizations uncouple for a pu
two-dimensional crystals, it is possible to work with the
independently. For the remainder of this section, we util
TE modes; however, the same inversion technique app
equally well to TM modes.

B. Defect crystal modes

The cavity modem can be expanded in the bulk mode
Hn,q(r ) using wave vectors that are confined to the first B
louin zone~see, for example, Ref.@29#!,

Hm~r !5(
n

(
qPBZ

an,q
(m)Hn,q~r !, ~14!
6-3
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GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 ~2002!
of the two-dimensional lattice. This superposition is the r
son for working with the magnetic, rather than electr
fields. Since Eq.~1! is Hermitian, the bulk modes are com
plete.

The photonic crystal cavity can be described by introd
ing an additional defect termdh(r ) into the reciprocal di-
electric function

h~r !5h0~r !1dh~r !, ~15!

whose Fourier transform is given by

dh~r !5E
k
dkdh~k!eik•r'(

k
dhke

ik•r. ~16!

However, unlike the bulk lattice, the cavity is not periodic,
the Fourier expansion must run over all wave vectorsk. In
practice, the integral is generally approximated by a disc
sum that is then truncated to allow computation.

The coefficientsan,k
(m) are calculated by substituting Eq

~14! and ~15! into the Maxwell equation~1!. This produces
the matrix eigenvalue equation@6,28#

(
n8,q8

An,q;n8,q8
(m) an8,q8

(m)
5

vm
2

c2
an,q

(m) , ~17!

where

An,q;n8,q8
(m)

5 (
G,G8

hn,q1G* dhq1G2q82G8hn8,q81G8

3~q1G!•~q81G8!1dn,n8dq,q8

vn,q

c2
. ~18!

Here, it can be seen that the point defect couples all of
bulk crystal modes. However, the Fourier coefficientsdhk
fall off quickly as the magnitude of the wave vector i
creases.

C. Cavity mode optimization

To optimize the inversion cost functionalJ, it is neces-
sary to express Eq.~8! in terms of the defect crystal mode
by utilizing the expansion~14!. When performing an actua
inversion calculation, this is the point when it would be ne
essary to select a bulk photonic crystal geometry, such
hexagonal lattice. Once this has been done, the plane w
representations of the optimization basis functions,Hn,q(r ),
can be computed.

Another important point is that the optimization is pe
formed overdh(r ), not the bulk lattice functionh0(r ). In
principle, this does not restrict the optimization in any wa
The distinction betweenh0(r ) anddh(r ) is not perturbative,
so there is no requirement on the relative magnitudes of
two functions. However, in practice, it can be practical
restrict the structure of the defect~for example, to enforce
radial symmetry! in order to limit the number of plane wave
~or equivalently, the number of reciprocal lattice vecto!
needed for Eq.~11! to converge.
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1. Cavity mode volume and intensity

Expressing the cavity mode volume in terms of the ba
function coefficients is straightforward,

Vm5 (
n8,q8

(
n,q

an8,q8
(m)* an,q

(m)^cn8,q8~r !ucn,q~r !&1c.c., ~19!

as is taking derivatives with respect to the coefficients,

dVm

daj
5(

n,q
an,q

(m)^c j~r !ucn,q~r !&. ~20!

Here, the spatial functionsc j (r ) are the quantities defined i
Eq. ~4!, and the inner product̂cn8,q8ucn,q& denotes integra-
tion over the real-space domain in which the mode volum
to be minimized.

Similarly, the field intensity at the location of the trappe
atom is given by

I m5 (
n8,q8

(
n,q

an8,q8
(m)* an,q

(m)Hn8,q8
* ~0!Hn,q~0!, ~21!

and the necessary derivatives with respect to the expan
coefficients are also straightforward to find. When perfor
ing an inversion calculation, both the mode volume and
tensity functions can be further expanded in terms of
reciprocal lattice vector plane waves. Doing so leads to a
braic expressions in the coefficientshn,q1G from Eq. ~11!.

2. Cavity Q factor

It is not as clear how to represent the cavityQ in terms of
the basis functions. The two-dimensional lattice is infinite
deep and therefore does not permit any radiated mo
However, this does not prevent us from minimizing featu
of the two-dimensional lattice that would promote out-o
plane loss were the structure a planar crystal. In other wo
we wish to find the two-dimensional structure of a plan
photonic crystal that minimizes the out-of-plane loss by co
sidering features computed for a pure 2D structure. Since
cavity Q cannot be directly computed, it is necessary to d
fine an auxiliary measure of field decay that applies to
two-dimensional lattice.

The essential requirement of the auxiliary measure is
optimizing it simultaneously maximizes the cavityQ for a
planar structure~where radiation loss can occur!. It is pos-
sible to identify such a measure by considering the phys
nature of radiative field decay in a planar photonic crys
Out-of-plane loss is the result of guided crystal modes c
pling to free-space modes@8#, and frequency-wave-vecto
pairs in free space must lie within the light cone. Therefo
bulk crystal modes with frequency-wave-vector pairs that
below the light line should not couple to free space beca
they undergo total internal reflection@22#.

Minimizing the contributions from bulk modesHn,q(r )
which lie above the light line reduces radiative cavity dec
We chose to adopt the following auxiliary function:
6-4
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L5 (
n8,q8

(
n,q

an8,q8
(m)* an,q

(m) vn8,q8vn,q

qq8
, ~22!

whereqj is the magnitude of its corresponding wave vect
qj5iqj i .

Of course, since a 2D crystal does not support any
guided modes, Eq.~22! does not provide a numerical valu
for the cavity Q. It is a measure that for a 2D crystal
expected to behave similarly to the actualQ of a planar pho-
tonic crystal with the same two-dimensional structure. T
naturally raises the question of how well Eq.~22! mimics the
features of a planar crystal compared to other choices for
auxiliary function. The primary motivation for using thi
definition of the auxiliary measure is that it has a distin
physical interpretation, while simultaneously producing
inversion cost functional that can be analytically optimize
There is substantial evidence@8# that minimizing the contri-
bution of 2D wave vectors above the light line improves t
cavity Q of a planar crystal. Actually, Eq.~22! is a strict
definition since symmetry considerations of the guided cr
tal modes will prevent many modes above the light line fro
coupling to free space. From a design perspective, it is
tractive to work with a conservative measure.

3. Analytic optimization

The photonic cavity design characteristics,@Eqs. ~19!–
~22!#, can be substituted for their respective terms in the c
functionalJ @dh#. Setting the derivatives of the design pro
erties with respect to the expansion coefficients equal to z
produces a linear variational problem. In order to ensure
the mode functions remain properly normalized, it is con
nient to impose the constraint 12(uan,qu250 as a Lagrange
multiplier. Maximizing the resulting Lagrangian leads to
matrix eigenvalue problem,

(
n8,q8

Fvn8,q8vn,q

qq8
1b IHn8,q8

* ~0!Hn,q~0!

2bV^cn8,q8ucn,q&Gan8,q8
(m)

5Lan,q , ~23!

whose eigenvectors correspond to values of the expan
coefficientsan,q

(m) which satisfy Eq.~9!. The eigenvector cor-
responding to the smallest eigenvalue is the best optimu

In practice, it is necessary to select values for the weig
ing parametersb I and bV . Nominally, this is because th
various terms in the cost functional are dimensionally
equivalent, and their relative magnitudes can differ sign
cantly. For example, the cavityQ and the mode volume ar
not numbers that can be directly added or compared.
inversion parametersb I andbV serve to remedy this problem
by mapping both terms into the dimensionless interval@0,1#.
Therefore, the ideal choices for the weighting parameters
the reciprocals of the optimal mode volume andQ.

However, since the optimal values are not known at
beginning of the inversion procedure, it is impossible
know the best choices forb I and bV a priori. While one
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possible solution is to guess values for the inversion par
eters that nominally map the terms into the interval@0,1#, this
is not an algorithmic procedure. A systematic approach
identifying good choices forb I and bV is to nest Eq.~24!
within a second maximization over theb i . Although, per-
forming the b i optimization calls for repeating the eigen
value problem, possibly many times, saving the values of
variational matrix elements and simply rescaling them
cording to the particular choice of theb i offers an efficient
computational technique for the inversion.

D. Extracting the defect dielectric

With the optimal mode coefficientsan,q
(m) known, the final

component of the inversion is to extract the defect dielec
dh(r ) from the expansion coefficients. Doing so involv
inverting the Maxwell equations, and can be accomplish
by substituting Eqs.~10!, ~11!, and ~16! into Eq. ~1! and
solving for thedhk .

In simplifying the resulting expressions, it is necessary
make use of the orthogonality of the bulk crystal mode fun
tions. It is also helpful to let the mode wave vectorsq run
over multiple Brillouin zones. Doing so leads to more ma
ageable equations because the summations are no long
stricted. In the end, the proper expressions can be obta
by folding the equations back into the first Brillouin zon
The details of the derivation are provided in the Append
and the result is a linear system of equations,

(
k

Dn,q;k
(m) dhk5an,q

(m)
vm

2 2vn,q
2

c2
, ~24!

where the inversion matrixD(m) is given by

Dn,q;k
(m) 5(

n8
(
G,q8

an8,q8
* hn,q1G* hn8,q81G2k8

3~q1G!•~q1G2k8!. ~25!

The matrix is indexed by the bulk modes, labeled by (n,q),
and the Fourier coefficients of the defect,k.

An important point to make is that the cavity resonan
frequencyvm enters into Eq.~24! as a parameter. Solving th
inversion requires specifying the cavity frequency which c
take on any value within the bulk crystal band gap. It sho
be expected that the best in-plane confinement results fro
cavity frequencyvm deep within the band gap. However, th
resulting inverted defect dielectric function is different d
pending on the choice of the resonance frequency. Moreo
different choices ofvm might lead to defects that are easi
to fabricate than others.

Computational complexity

Interpreting the computational complexity of the matr
equations in Eq.~25! is aided by considering thek vectors as
a sum of reciprocal lattice vectors and Brillouin zone ve
tors,k5q1G. This shows that the defect is constructed u
ing bulk crystal modes forall wave vectors that lie within the
Brillouin zone. Counting vectors in this manner allows t
6-5
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GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 ~2002!
dimensions of the inversion matrices to be determined. S
Eq. ~1! is Hermitian, the number of bands is equal to t
number of reciprocal lattice vectors,NG5`. Similarly, the
number of bulk crystal modes needed to construct a non
riodic defect is Nq5`. Therefore, the dimension of th
square matrixD(m) is a strictly countable double infinity.

In practice, summations over reciprocal lattice vectors
truncated to a finite numberNG , which likewise limits the
number of bands for each wave vector toNG . The truncated
bulk mode basis is no longer rigorously complete. Howev
in practice, the Fourier coefficients in Eq.~10! fall off
quickly asiGi increases. Therefore, truncating the basis
be achieved without sacrificing accuracy provided that F
rier expansions remain sufficiently accurate. Retaining
proper dimension ofD(m) requires that the number of defe
Fourier wave vectors,Nk , also be properly chosen. The r
quirement thatD(m) remain square requires that the numb
of distinct bulk modes in the Brillouin zoneq ~recall thatk
5q1G) be exactlyNG .

The number of matrix elements inD(m) scales asO(NG
2 ).

However, the computational complexity of the sums th
must be evaluated when computing the matrix elements s
asO(NG

3 ). Therefore, the overall time complexity for solv
ing the inverse problem isO(NG

5 ), and can prove to be com
putationally demanding. In practice, it is beneficial to e
ploy approximate methods for solving the linear system
equations@31#, if the calculations are to be performed on
personal computer.

E. Illustration: Symmetric defect

As a first demonstration, we considered an hexagonal
photonic crystal with a radially symmetric defect. The bu
material index of refraction was chosen to benb53.4, and
the hole radius wasr h /a50.3 ~dimensionless distances,r /a,
have been adopted due to the invariance of the results
respect to a consistent scaling of the spatial dimensions!. The
rationale behind these parameters was based on comp
factors. It has been shown that large lattice holes lead
out-of-plane loss due to scattering from the edges@8,22#.
However, the frequency band gap decreases as the hole
is reduced, sor h must not be made too small. 30% of th
lattice constant provides a good compromise.

The dielectric index of refraction,nb53.4, was chosen
because it is typical of the semiconductor materials t
might be used to incorporate photonic crystals into at
trapping experiments~e.g., Al0.3Ga0.7As). The essentia
property of the bulk dielectric material is that it does n
absorb light around the atomic transition frequency, for
ample 852 nm for Cs.

For the purpose of the calculations, the photonic crys
lattice was truncated to five layers surrounding the cen
defect atr50. We found that this number of layers provide
a sufficient description of the properties of the photonic cr
tal without exceeding the computational power of a typi
desktop computer. The coefficient optimization was p
formed by adjusting the parameters, (b i), in J until the best
maximum was achieved. Parameter optimization was
formed using a conjugate-gradient search algorithm@32#
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over the b i . The search required solving the eigenval
problem in Eq. ~24! for different scaling parameters 2
times.

Solving the linear system of inversion equations in S
III D produced the crystal and associated cavity mode sho
in Fig. 1. Here, the 2D mode volume was;l2/4. The loca-
tion and size of the photonic crystal holes was determin
from a contour plot of the reciprocal dielectric function, s
Fig. 2. The contour half way between the minimum a
maximum values ofh(r ) was adopted in order to eliminat
the small peak oscillations. These oscillations were the re
of truncating the Fourier expansions forh0(r ) anddh(r ).

The photonic crystal shown in Fig. 1~a! has several dis-
tinctive features. First, the hole at the location of the cavity
reduced in radius tor c50.21/a. The nearest-neighbor hole
were also reduced in radius, to approximatelyr h50.26/a, as
well as outwardly displaced from their original locations b
;0.15/a. Qualitative arguments for these features, wh
were also observed by Vuckovicet al., have been propose
@8#. Reducing the size of the defect hole draws a bulk mo
from the air band into the photonic band gap. Air-ban

FIG. 1. The photonic crystal~a! and the cavity electric field~b!
that result from optimizing theQ, mode volume, and peak cavit
intensity by solving a two-dimensional inverse problem for a ra
ally symmetric defect. The resulting cavity hole was reduced
radius tor c52.1/a, wherea is the crystal lattice constant, and th
neighboring holes were also reduced in size and displaced outw
The most significant feature of the optimized structure is t
the index of refraction of the bulk crystal holes was increased
nh51.9.
6-6
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INVERSE-PROBLEM APPROACH TO DESIGNING . . . PHYSICAL REVIEW E66, 066606 ~2002!
modes are characterized by higher intensities in regi
where the index of refraction is lower, such as in the air ho
Therefore, the reduced cavity radius is most likely the res
of the design requirement that maximizes the intensity ara
50.

Decreasing the radii of the neighboring holes and mov
them away from the cavity reduces the intensity of the s
ondary lobes surrounding the main peak in the cavity m
@see Fig. 1~b!#. These lobes, which would normally coincid
with air holes in the hexagonal lattice, experience an aty
cally high index of refraction. The lobe intensities are su
pressed because the defect mode, which was pulled from
air band, is low-index seeking. As a result, the cavity mo
displays better localization. Therefore, the displaced ne
boring holes likely result from the mode volume minimiz
tion design requirement.

By far, the most significant feature of the optimized ph
tonic crystal in Fig. 1 is that theindex of refraction of the
bulk holes is increasedto nh;1.9. The optimal structure is
bulk photonic crystal whose holes are made of a mate
other than air. Understanding this result requires analyz
how the cavity mode is constructed from the bulk mode ba
functions. The solid lines in Fig. 3 show the dispersion re
tionship of the optimized crystal~with nonair holes!. For
reference, the dispersion relationship for a correspond
crystal with air holes (nh51.0) is denoted by the broke
lines. The points~circles! represent bulk modes, identified b
their band index, wave vector, and frequency, which cont
ute more than 1%,uan,q

(m)u2.1022, to the optimized cavity
mode.

As can be seen in Fig. 3, the crystal withnh51.9 contains
more bands that lie below the light line. Consequently, m
modes, particularly with larger wave vectors and frequ
cies, contribute to the cavity mode without sacrificingQ
~since these modes now lie below the light line!. Most likely,
the ability to include contributions from more bulk cryst
modes allows an increase in the cavityQ, while simulta-
neously decreasing the mode volume.

FIG. 2. Extracted reciprocal dielectric function,h(r )51/k(r ),
found by solving the inversion problem for a two-dimensional he
agonal lattice with a radially symmetric defect. The most distinct
feature of the mathematically optimal photonic crystal is that
bulk lattice air holes have an index of refractionnh.1.
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The rationale here is that leaky modes must be exclu
by the Q maximization. However, constructing a cavi
mode that is well localized, i.e., not periodic, requires a la
number of Fourier components, including high frequen
modes. Drawing bands out of the light cone provides acc
to more basis functions and this allows a localized cav
field to be constructed without resorting to leaky mod
Still, the optimization did incorporate several bulk mod
from above the light line, particularly from theJ-G line.

We do not attempt to comment on how photonic cryst
with nonair holes might be fabricated. However, it is impo
tant to consider the major effects of adjusting the hole diel
tric. Increasing the hole index of refraction decreases
band gap. However, because the index contrast between
bulk material and the holes is smaller, it should be poss
to increase the hole radius without suffering as much vert
scattering from the edges. Of course, increasing the hole
pushes bands back into the light cone and a balance mu
found.

F. Illustration: Asymmetric defect

As a second demonstration, we relaxed the radial sym
try requirement, and considered an arbitrary defect in a tw
dimensional hexagonal lattice. The same photonic crystal
rameters from Sec. III E were adopted: a bulk index
refraction nb53.4, and hole radiusr h /a50.3. Again, the
mode expansion was constructed using five photonic cry
layers surrounding the defect center to provide a suffici
bulk mode basis expansion without incurring excessive co
putational expense.

Solving the linear system of inversion equations was p
formed by nesting the optimization within a conjugat
gradient search for the bestb i weighting parameters. The
photonic crystal was again constructed by taking the cont

-

e

FIG. 3. Dispersion relationship and bulk mode contributions
the optimized cavity mode for a radially symmetric defect. T
upper shaded region denotes the free-space light line. The b
structure~solid lines! of the optimized photonic crystal is show
and the points indicate bulk modes that contribute more than 1%
the cavity mode. The dashed lines represent the band structure
photonic crystal with air holes.
6-7
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GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 ~2002!
level half way between the minimum and the maximum
h(r ) to eliminate the numerical effects of truncating the Fo
rier expansions.

The resulting photonic crystal and cavity mode is depic
in Fig. 4. Here, the volume of the 2D mode was reduced
;l2/10. The center photonic crystal hole was reduced
radius to r c50.22/a and remained circular. However, th
nearest-neighbor holes were deformed mainly in theŷ direc-
tion. The minor axes, alongx̂, of the four holes above an
below the cavity were reduced tor h ;0.26/a. Their corre-
sponding major axes were simultaneously increased
0.39/a, resulting in the elliptical holes as seen in Fig. 4~a!.
These four neighboring holes were also radially displa
from their normal hexagonal lattice sites by 0.05/a, smaller
than what was observed for the symmetric defect.

There was also a deformation of holes lying along thex̂

axis. These were elongated in theŷ direction; however, the
degree of eccentricity was not constant. The minor axes
the two horizontally neighboring holes decreased to 0.26a,
while their major axes increased to 0.31/a. The remaining
horizonal holes were also vertically stretched, with ma
axes given by 0.36/a, 0.31/a, and 0.30/a for photonic crystal

FIG. 4. The photonic crystal~a! and the cavity mode~b! that
result from optimizing theQ, mode volume, and cavity intensity b
solving a two-dimensional inverse problem~radial symmetry not
imposed!. The cavity hole was reduced in radius tor c52.18/a, and
the neighboring holes were elongated in the vertical direction.
most significant feature of the optimized structure is that the in
of refraction of the bulk crystal holes was increased tonh51.75.
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layers 3, 4, and 5, respectively. Slight deformations along
x̂ direction were observed in theŷ-axis holes. However, thei
deformation was small, with major axes of 0.31/a along the
x̂ direction and minor axes of 0.29/a. No consistent defor-
mation of hole size was observed for any other direction

The qualitative arguments, suggested by Vuckovicet al.
@8#, also apply to this structure. Replacing air hole sites w
higher-index material suppresses the amplitude of air-b
originated modes. But more importantly, the partial elong
tion of holes along thex̂ axis bears significant resemblanc
to the ‘‘fractional edge delocations’’ suggested by Sche
and co-workers@8,9#.

As with the radially symmetric defect, the index of refra
tion of the bulk holes increased, but only tonh;1.8. A simi-
lar argument based on pulling higher bands out of the li
cone again applies. However, it is not as easy to provide
argument for the elongated holes surrounding the defect
along thex̂ andŷ axes. Nonetheless, it can be seen from F
4~b! that better mode localization was achieved by allowi
an asymmetric cavity defect.

Figure 3 shows the band diagram for the optimized p
tonic crystal. The dispersion relationship for bulk holes w
nh51.8 is depicted by the solid lines, and the air hole ban
are given by the broken lines. The circles represent b
modes that contribute more than 1%,an,q

(m).1022, to the
optimized cavity mode. The same argument used to exp
the symmetric defect results can be made here. The cry
with nh51.8 contains more bands below the light line.

A distinctive feature of the optimal asymmetric mode
that it contains fewer contributions from leaky modes~inside
the light cone! than for the symmetric case. This can be se
by comparing Figs. 3 and 5. Exactly how the largerQ was
achieved for the asymmetric cavity is not clear. However
is not surprising that constraining the optimization~for ex-

e
x

FIG. 5. Dispersion relationship and bulk mode contributions
the optimized cavity mode for a radially symmetric defect. T
upper shaded region denotes the free-space light line. The b
structure~solid lines! of the optimized photonic crystal is show
and the points indicate bulk modes that contribute more than 1%
the cavity mode. The broken lines represent the band structure
photonic crystal with air holes.
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INVERSE-PROBLEM APPROACH TO DESIGNING . . . PHYSICAL REVIEW E66, 066606 ~2002!
ample, by imposing a symmetry restriction! reduces the abil-
ity of the inversion to satisfy the design requirements.

In these two-dimensional examples, solving the des
problem by inversion resulted in structures that differ fro
the previous trial and error designs that have been sugge
These new photonic crystal structures, however, might pr
difficult to fabricate. As such, they provide an indication
the performance of an ideal, perhaps experimentally imp
tical, cavity.

IV. NUMERICAL INVERSION RESULTS

As a final example of inverting a photonic crystal defe
we considered a hexagonal structure with finite depth to
able a direct calculation of the cavityQ. Additionally, we
constrained the index of refraction of the crystal holes
nh51. In this demonstration, the aim was to identify
optimal planar photonic structure without requiring a mo
complicated fabrication.

For the planar structure, it was necessary to abandon
analytical solution and perform the inversion optimizati
numerically. In some respects, the numerical design prob
was much simpler than the analytic case— it was possibl
maximize the inversion cost functionalJ, without the need
for a specific mathematical analysis. Instead, the spatial
pendence of the dielectric function was parametrized. T
the inverse problem was solved by optimizingJ @h(r )# over
the parameter space using a genetic algorithm.

However, numerical methods introduce several new ch
lenges. For example, since the inversion cost functional
volved a large number of parameters, the resulting mult
mensional optimization was complicated by the existence
local minima. Additionally, numerically integrating the Max
well equations is computationally expensive. For instanc
single mode volume and cavityQ calculation can require
several minutes of computer time.

Planar photonic crystal

We considered an eight layer, two-dimensional hexago
lattice slab, as depicted in Fig. 6. Based on the previ
arguments~c.f., Sec. III E!, the hole radius was chosen to b
r h /a50.3 with a bulk material index of refractionnb53.4.
The slab thickness was taken to bed/a53/4, in order to

FIG. 6. Schematic of the planar photonic crystal optimized
ing numerical inversion methods.a is the hexagonal lattice con
stant,d is the thickness of the slab, andr h is the radius of the bulk
crystal holes. The design parameters were obtained by compu
the crystal electromagnetic fields produced by plane wave illum
tion. The cavityQ was obtained by computing the reflection coe
ficient R(v) as a function of incident wave frequency.
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prevent multimode behavior@7#. Parametrizing the dielectric
function was accomplished by treating the positions and m
jor and minor axes of the lattice holes as optimization va
ables. Specifically, the cavity hole, the holes surrounding
defect, and thex̂-axis holes were considered. In all, the
were 52 optimization variables, 4 for 13 different lattic
sites.

The Maxwell equations were solved by employing t
transfer matrix method of Pendry and Bell@33#. This tech-
nique provided a means for computing the stationary sta
of the electromagnetic field for a crystal illuminated on o
edge by a plane wave~refer to Fig. 6!. The spatial depen-
dence of the electromagnetic fields, as well as the cry
transmission and reflection coefficients were calculated us
a first-order finite difference solution to Maxwell’s equation
The integration mesh used to compute the wave fields
tended five layers above and below the surface of the s
and absorbing boundary conditions were imposed at the
and bottom of the integration cell.

The mode volume was computed by integrating t
square magnitude of the electric field over the interior of
photonic crystal. The volume integration was performed
ing a three-dimensional Simpson’s rule quadrature, and
result was scaled by the field maximum, according to Eq.~3!.
The cavityQ was directly computed by scanning the refle
tion coefficient over the frequency band gap. The full wid
at half maximum of the reflection line shape was then use
determine the cavityQ.

The inversion cost functional was optimized by emplo
ing a genetic algorithm@34# ~GA! to maximizeJ @h(r )#. A
GA was chosen because, although not terribly efficient,
netic algorithms provide good exploration to exploitation
multidimensional searches. As such, they are generally
cessful at avoiding local minima on a complex optimizati
surface. However, good exploration does not come with
cost. Twenty-seven GA generations~iterations of the algo-
rithm! were required to optimizeJ, as can be seen Fig. 7
With a population size of 10, a steady-state propagation r
tine, a mutation rate of 15% and a crossover rate of 85%,

-

ng
-

FIG. 7. Optimization progress as a function of genetic algorit
generation number for the numerical inversion involving a pla
photonic crystal.
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GEREMIA, WILLIAMS, AND MABUCHI PHYSICAL REVIEW E 66, 066606 ~2002!
full optimization required 24.5 h of central processing u
time on an Intel PIII 1.2-GHz desktop machine.

The resulting photonic crystal and the optimized cav
mode are shown in Fig. 8. As can be seen, a similar struc
to the two-dimensional optimization was obtained. The c
ity defect hole was reduced in radius to 0.21/a and the holes
surrounding the defect were also decreased in size. The h
along thex̂ axis were also elongated in theẑ direction, which
again demonstrated the remarkable similarity to the fr
tional edge delocations suggested by Scherer and co-wo
@8,22#.

The mode volume of the field in Fig. 8 was found to
V m;l3/3 and the cavityQ was;1.13105. These quantities
surpass those of the best PBG cavity designs to date.

V. CONCLUSION

We demonstrated that inversion methods provide a p
erful technique for designing photonic crystals for cav
QED experiments. Both an analytical solution for a tw
dimensional crystal and numerical results for a planar~finite
thickness! crystal were presented. In both cases, the des
objectives, namely high cavityQ and small mode volume
were achieved. The analytical analysis on 2D structures

FIG. 8. The photonic crystal~a! and the cavity electric field~b!
that result from optimizing theQ, mode volume, and peak cavit
intensity by performing a numerical inversion for a planar photo
crystal.
06660
t

re
-

les

-
ers

-

-

n

f-

fered the advantage that no specific parametrization of
dielectric function was necessary, and the structure was
to explore full variations consistent with the imposed he
agonal symmetry. The numerical illustrations, while they
quired a specific parametrization of the dielectric functio
demonstrated the success of inversion techniques for s
tures that can be tested in the laboratory.

For two-dimensional crystals, it was shown that contrib
tions to the cavity mode from leaky bulk modes could
minimized without delocalizing the field. Here, inversio
produced design alternatives not previously suggested
trial and error, or intuitive design. The optimal cavity defe
for both the radially symmetric and asymmetric defect op
mizations called for a lattice of holes with an index of r
fraction greater than 1. An explanation for this inversion
sult, i.e., bulk crystal holes composed of a material ot
than air, was suggested. Increasing the index of refractio
the lattice holes pulls more of the band diagram out of
light cone. Consequently, less of the higher frequency b
modes are leaky. It was argued that a better localized ca
field can be constructed by incorporating these higher
quency basis functions.

A point from the analytic inversion that deserves som
attention is the choice of cavity resonance frequencyvm . It
can be seen in Eq.~25! that vm enters the inversion as
parameter which must be specified. A thorough investigat
of the inversion outcome as a function of wherevm lies
within the band gap was not performed here becaus
would require repeating the full inversion for many differe
choices ofvm in order to fully characterize the relationship
The computational expense of such an analysis is proh
tive. Further investigations may attempt to address this po

The inverse problem design approach was also applie
a planar crystal in order to treat a more realistic structu
However, this required that numerical methods for integr
ing the Maxwell equations as well as optimizing the inve
sion cost function be adopted. It was demonstrated tha
crystal with low mode volume and highQ could be achieved.
In order to minimize the effects of local minima in the in
version optimization, a genetic algorithm was adopted,
spite its computational expense.

For the planar photonic crystal inversion, the dielect
constant of the bulk lattice holes was constrained tonh51.
This provided an example of restricting the inversion optim
zation because of fabrication considerations. Although it m
be possible to manufacture the inversion designs from S
III, i.e., bulk lattice holes withnh.1, it is also important to
identify the best possible structure which canbe fabrica
using the currently available techniques.

An aspect of the design process that was not considere
this paper was robustness. Ideally, the photonic crystal wo
be insensitive to slight variations in its structure, as mig
result from small fabrication errors, temperature fluctuatio
etc. Including robustness into design optimization proble
would add additional constraints into the optimization pr
cess, however, algorithmic approaches to finding robust
tima are known@35,36#. In addition to investigating robust
ness, we plan to explore the use of optimization method
design PBG structures with convenient geometric featu

c
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INVERSE-PROBLEM APPROACH TO DESIGNING . . . PHYSICAL REVIEW E66, 066606 ~2002!
such as enlarged holes for atom trapping.
It was shown that the mathematical analysis tools utiliz

here simultaneously optimize multiple, complimentary d
sign requirements. Achieving similar outcomes via trial a
error methods is generally a formidable task. Therefore,
algorithmic approach to design problems with multiple o
jectives, such as with photonic band gap materials, w
likely only be possible via an algorithmic approach.
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APPENDIX: 2D INVERSION EQUATIONS

In this appendix, we describe in greater detail how
extract the defect dielectric function from the optimized e
pansion coefficients~refer to Sec. III D!. The general proce
dure involves substituting the normal mode expansion~11!
and the Fourier expansions~10! and ~16!, into the Maxwell
equation~1!. The resulting inversion equation~24! results
from employing the orthogonality of the bulk modes.

In doing the algebra, it is more convenient to work a bu
mode expansion that includes wave vectors from all ok
space, i.e., by incorporating multiple Brillouin zones,

Hm~r !5
1

N (
n,k

an,k
(m)Hn,k~r !, ~A1!

whereN is the number of Brillouin zones~reciprocal lattice
vectors!. The orthogonality relationships are now give by

E
VN

Hn8,k8
* ~r !Hn,k~r !dr5dn,n8(G dk8,k1G , ~A2!

where the integration is over theN associated Wigner-Seit
cells.
s

l.

r,

s

d
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Substituting both the bulk crystal and defect dielect
Fourier expansions into the Maxwell curl equation,

“3h0~r !“3Hm~r !1“3dh~r !“3Hm~r !5
vm

2

c2
Hm~r !,

left-multiplying by Hn9,q9 and integrating leads to

1

N (
n,k

an,k
(m)

vn,k
2 2vm

2

c2 E
V
Hn9,k9

* ~r !Hn,k~r !dr

5
1

N (
k

(
n,k

(
G,G9

an,k
(m)dhkhn9,k9¿G9

* hn,k¿G

3~k91G9!•~k91G92k8!E
V
ei (k1G1k82k92G9)•rdr ,

~A3!

where, again, the integrations are over theN unit cells. Ap-
plying the orthogonality of the bulk modes leads to a set
equations that still run over all wave vectors,

1

N (
n,k

(
k8

(
G9

an,k
(m)dhk8hn9,k91G9

* hn,G92k8

3~k91G9!•~k91G92k8!

5
21

N
an9,k9

(m)
vn9,k9

2
2vm

2

c2
. ~A4!

Then, the summations can be folded back into the first B
louin zone by using the identity

(
n,k

an,k
(m)5N(

n,q
an,q

(m) , ~A5!

and the indices can be renamed to produce Eq.~24!.
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